Development and evaluation of an automated tree detection–delineation algorithm for monitoring regenerating coniferous forests
نویسنده
چکیده
An algorithm is presented for automated detection–delineation of coniferous tree regeneration that combines strategies of several existing algorithms, including image processing to isolate conifer crowns, optimal image scale determination, initial crown detection, and crown boundary segmentation and refinement. The algorithm is evaluated using 6-cm pixel airborne imagery in operational regeneration conditions typically encountered in the boreal forest 5–10 years after harvest. Detection omission and commission errors as well as an accuracy index combining both error types were assessed on a tree by tree basis, on an aggregated basis for each study area, in relation to tree size and the amount of woody competition present. Delineation error was assessed in a similar manner using field-measured crown diameters as a reference. The individual tree detection accuracy index improved with increasing tree size and was >70% for trees larger than 30 cm crown diameter. Crown diameter absolute error measured from automated delineations was <23%. Large crown diameters tended to be slightly underestimated. The presence of overtopping woody competition had a negligible effect on detection accuracy and only reduced estimates of crown diameter slightly. Résumé : Cet article présente un algorithme pour la détection et la délinéation automatique de la régénération de conifères. Il combine les stratégies de plusieurs algorithmes existants incluant le traitement d’image pour isoler la cime des conifères, la détermination de l’échelle optimale de l’image, la détection préliminaire de la cime et la segmentation du contour de la cime avec son raffinement. L’algorithme est évalué en utilisant l’imagerie aérienne avec des pixels de 6 cm dans des conditions opérationnelles de régénération typiquement rencontrées en forêt boréale cinq à dix ans après la récolte. Les erreurs d’omission et de commission ainsi qu’un indice de précision combinant les deux types d’erreurs ont été analysés individuellement pour chaque arbre et pour des regroupements d’arbres dans chaque aire d’étude en relation avec la taille des arbres et le nombre de compétiteurs présents. L’erreur de délinéation a été analysée de façon similaire en utilisant le diamètre des cimes mesurées sur le terrain comme référence. L’indice de précision pour la détection des individus augmente avec la taille de l’arbre et dépasse 70 % pour les arbres dont la cime a plus de 30 cm de diamètre. L’erreur absolue de délinéation automatique du diamètre de la cime est inférieure à 23 %. Les grands diamètres de cime tendent à être sous-estimés. La présence de compétiteurs qui surpassent la régénération a un effet négligeable sur la précision de détection et réduit seulement légèrement les valeurs estimées du diamètre des cimes. [Traduit par la Rédaction] Pouliot et al. 2345
منابع مشابه
Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration
Ensuring successful forest regeneration requires an effective monitoring program to collect information regarding the status of young crop trees and nearby competing vegetation. Current field-based assessment methodology provides the needed information, but is costly, and therefore assessment frequency is low. This often allows undesirable forest structures to develop that do not coincide with ...
متن کاملIndividual Tree Crown Detection and Delineation from High Spatial Resolution Imagery Using Active Contour and Hill-climbing Methods
Efficient forest management requires detailed, timely information on forests. The increasing availability and affordability of high spatial resolution remotely sensed imagery provides viable opportunities for developing automatic forest inventories at fine scale. Individual tree crown detection and delineation has become increasingly important for forest management and ecosystem monitoring. Exi...
متن کاملAutomated Tree Detection and Measurement in Temperate Forests of Central Europe Using Laserscanning Data
The purpose of this study was to test a method for delineating individual tree crowns using a fully automated object-based pattern recognition methodology. The study material included small-footprint time-of-flight laser scanner data acquired over the Norway spruce (Picea abies) and European beech (Fagus sylvatica) dominated forests of the Bavarian Forest National Park near Passau, Germany. Gro...
متن کاملDetection of Individual Tree Crowns in Airborne Lidar Data
Laser scanning provides a good means to collect information on forest stands. This paper presents an approach to delineate single trees automatically in small footprint light detection and ranging (lidar) data in deciduous and mixed temperate forests. In rasterized laser data possible tree tops are detected with a local maximum filter. Afterwards the crowns are delineated with a combination of ...
متن کاملA Region-Based Hierarchical Cross-Section Analysis for Individual Tree Crown Delineation Using ALS Data
In recent years, airborne Light Detection and Ranging (LiDAR) that provided three-dimensional forest information has been widely applied in forest inventory and has shown great potential in automatic individual tree crown delineation (ITCD). Usually, ITCD algorithms include treetop detection and crown boundary delineation procedures. In this study, we proposed a novel method called region-based...
متن کامل